A Peek into the Future; Large UAS in the National Airspace System

by HPA · September 16, 2017

A Peek into the Future; Large UAS in the National Airspace System

by Paul Volk

The advent of drones in our national, local or even personal airspace is a much-covered topic. We’ve seen stories about drones delivering packages, monitoring traffic, searching for missing persons, etc. For the most part, these operations fall under the governance of the FAA’s Small UAS (Unmanned Aircraft Systems) rule, which applies to drones flying at or below an altitude of 400 feet, and weighing 55 pounds or less. But the future holds more in store for UAS operations. In the not-too-distant future, there will be much larger UAS sharing the skies with you, flying around with no one aboard at your altitude, landing at your airport, and even making instrument approaches. How big? Global Hawk-size, for example – 44 feet long, gross weight of over 25,000 pounds.

2017.08.17 04.10 Flyhpa 5995c00e99aa3

Figure 1 NASA Global Hawk Research UAS

Welcome to the world of RTCA Special Committee-228. The FAA has tasked this little-publicized group with developing the standards for the equipment larger UAS must use to “file and fly” in all but Class B airspace. You may not realize it, but the Radio Technical Commission for Aeronautics (RTCA) has been drafting standards for aircraft equipment since 1935. Probably all the avionics in your aircraft have been certified to FAA Technical Standard Orders (TSOs), and the FAA often gets its guidance from RTCA documents called MOPS (Minimum Operational Performance Standards). The equipment being specified by SC-228 will perform various functions unique to UAS operations. This article describes the concepts and equipment required for UAS to “Detect and Avoid” other aircraft in the National Airspace System (NAS).

2017.07.03 09.31 Flyhpa 595ab7b9d0268

Figure 2 Airspace Classifications in the NAS

What is Detect and Avoid?

Let’s face it – sharing the skies with large UAS is mostly about NOT having a mid-air with them. FARs require pilots to see and avoid other aircraft when weather conditions permit. UAS can’t “see”, but the FAA is not about to waive these regulations for the sake of UAS integration into the NAS. Thus, when applied to UAS, which substitute surveillance sensors for human eyesight, the FAA requirement is called Detect and Avoid (DAA). DAA is defined as “the capability of a UAS to remain ‘well clear’ from and avoid collisions with other airborne traffic.”

What Does Well Clear Mean?

Excellent question, and the FAA doesn’t really define it. Just missing each other (“swapping paint” in the vernacular) is obviously not good enough. Built-in margins for safety and error must be established. Stakeholders in the NAS (manned aircraft pilots, UAS pilots, air traffic controllers) need input as well. The definition is more complicated than you might think, because it must include all the parameters necessary to implement an automated DAA system. That’s what goes into a MOPS, and the aeronautical research community pitches in to help.

It is difficult to sum up this research in a few words. Suffice it to say that there have been many meticulously designed experiments, each contributing a vital piece of the puzzle that will eventually be put together to define DAA well clear.

I was part of a team of NASA engineers and contractors tasked with collecting NAS stakeholder input. The team created sophisticated simulations that immersed subjects in real-world scenarios where manned aircraft and UAS were operating together. (Texans might be interested to know that the DFW Class B and its surrounding airspace were used for one such scenario.) Actual controllers and pilots manned the simulator stations, communicating over realistic approach “frequencies.” In each experiment, several pre-planned encounters occurred between manned aircraft and UAS. The UAS pilots were required to maneuver to avoid the manned aircraft (more on how they did this shortly) while experimenters twiddled the dials that determined how close the aircraft got to each other. In addition to recording objective data, experimenters collected reactions from the subjects about their comfort level with the UAS encounters on a Goldilocks-like scale – too close, too far, or just right.

2017.08.17 04.16 Flyhpa 5995c1654f808

Figure 3 The author manning a UAS simulator station

How DAA Might Work

UAS are necessarily equipped with sensors to detect other aircraft (remember, no eyes up there). This sensor information is relayed to the ground in real-time and analyzed for other aircraft that represent a potential collision threat, also known as intruder aircraft. In an ADS-B environment, the trajectory (intended flight path) of the intruder is part of the information transmitted, and can be factored into the threat analysis.

The software that makes DAA happen runs in the station the UAS pilot “flies” with, called the ground control station. DAA algorithms have existed for years in the research world; NASA has been working on them since 2001. These algorithms not only detect threats, but also provide suggested guidance to assist the UAS pilot in performing any necessary avoidance maneuvers.

A sighted pilot, faced with staying well clear of a converging intruder, would change heading, altitude, airspeed, or a combination of all three. For DAA, the preferred method is to show the UAS pilot “maneuver bands.” These are bands that are overlaid on the primary flight display, and they show headings, altitudes, and/or vertical speeds that will cause the UAS to converge with one or more identified intruders. The bands advise that these trajectories are temporarily off limits, but by flying outside the maneuver bands, the UAS will remain well clear of the intruder(s).

The clip below is an excerpt from a NASA video. It shows an example of a maneuver band displayed during a simulated encounter between a UAS (DOJO56) and an intruder (N2079W); in this case, an overtaking encounter. In this fast-motion vignette, notice the orange band intersecting the UAS track on the compass rose – this is a maneuver band. To maintain well clear, the UAS pilot flies a heading that is outside the maneuver band. As the UAS pilot pulls abeam and then ahead of the intruder, notice how the maneuver band changes to reflect the changing geometry of the encounter, until it finally disappears. This is the DAA algorithm in action.

Credit: From “Detect and Avoid Part 1 A Concept for UAS Integration”; Langley Research Center

Don’t be fooled by the apparent simplicity of this demonstration. Behind the bands and symbols shown in this clip are a complex combination of mathematics, aeronautics, NAS operational experience, and even FAA policy. I have hundreds of hours flying this DAA prototype on a simulator, and can say that it is intuitively easy to understand and provides ample warning to the UAS pilot of the impending threat. Flight tests are being performed with NASA’s “Ikhana” Predator-B UAS to verify the DAA system in real-world situations.

2017.07.03 09.32 Flyhpa 595ab7dcd6826 800x533

Figure 4 NASA Predator-B “Ikhana” UAS (Credit: SONY DSC)

How Close Will UAS Come to Manned Aircraft?

The closest point of approach (CPA) between UAS and any other aircraft is part of the DAA well clear definition. The research shows that there’s a tightrope to be walked here; make the CPA too large and it can disrupt other traffic sharing the airspace; too small and NOBODY likes it.

The current recommendation – 4000 feet horizontal and 450 feet vertical – is as close as UAS can get to be considered well clear. However, you won’t ever see a Global Hawk bearing down on you at that distance, because there are timing mechanisms built into the well clear definition that require the UAS to be turning away at least 35 seconds before that happens. You might get a good look at that ‘Hawk passing overhead or abeam of you, but if its pilot followed the DAA guidance, the collision threat has already been managed, safely.

It should be noted that the above applies only to UAS; we still get to use our eyes and judgment to remain well clear of other aircraft (no DAA systems required!)

A Brief Commercial for ADS-B

If UAS were to violate these well clear parameters, it might be due to sensor uncertainty. This is the variability in determining the exact position of an intruder using onboard UAS equipment. Sensor accuracy is the latest piece of the DAA puzzle to fall, and to address it, the MOPS says UAS must carry a combination of sensors including radar, TCAS and ADS-B.

Speaking of which, if you are looking for additional motivation to equip, you should know that aircraft transmitting their position via either the 1090ES or UAT versions of ADS-B provide the most accurate position information for advanced concepts such as DAA. (Global Hawks knowing exactly where you are is a good thing, right?) As the FAA deploys NEXTGEN, its grand plan for modernizing the NAS, ADS-B plays a similarly crucial role in many concepts that will increase both the capacity and safety of the airspace for ALL users.

Paul Volk is a pilot, engineer and aviation enthusiast with over 4200 hours of flying time. His experience in avionics development and avionics-related research has been at the vanguard of technologies such as ADS-B, cockpit-based decision aids and FAA NextGen capabilities that will affect the future of general aviation.

How it Started

One of my best friends in high school, (Doug Gray) was a private pilot. He offered to take me up for a flight in a 1967 Cessna 150, N6228S. We took off from Calhoun, Georgia, and he took me on a scenic tour of the area, I was hooked. I later found out that my English teacher, (Jan Haluska) was also a flight instructor and the school was offering a ground school course the next year, which he taught, along with flight training with the goal of becoming a private pilot. I managed to talk my dad into funding the training, at the time the total cost was right around $500. Cessna 150 rental rates where $12 an hour, and the 172 we used for cross country was $15 an hour including fuel.

Training Begins

It started August of 1977. The fall semester rolls around, and I am enrolled in ground school, and if memory serves me, we met twice a week. First came the paperwork for my student pilot certificate, which at the time was included with the 3rd class medical. I loved ground school, especially learning navigation, plotting courses on the sectional, again this was before iPads and GPS, so we did a lot of dead reckoning and VOR navigation for cross countries. At the end of the course, I made an 83% on the Private Pilot written exam, remember this was before we had the question-and-answer books that on future test I would consume before taking a written.

2022.06.09 11.19 Flyhpa 62a27fea7716a


The fun really began on August 22, 1977, it was my first flight. To my surprise we used the same Cessna 150, N6228S that my friend Doug Gray had taken me for a ride in. The Cessna 150 had a standard VFR instrument panel, with one NAV/COM, and one VOR CDI. No intercom, so no headset, at the time I didn’t know what I was missing. I didn’t get my first headset until I started my instrument training in 2003. I was a big guy, I was 6’ 4” and weighed 245 lbs. but I do not remember being uncomfortable in the 150 even with the instructor in the right seat.

First flight lasted .8 hours, and we accomplished orentation, shallow turns, stability, and effects of flight controls. Over the next few months we added steep 720’s, slow flight, stalls, turns around a point, S-turns, emergencies, landings, (short field, soft field and normal).


At this point I want to talk about a training experience that still stands out. We were close to solo and were practicing takeoffs and landings. Turning base to final Jan got very upset at the way I was cross controlling the aircraft. Cross control is when you are in, say a left turn, and use opposite rudder to line the nose up with the runway. So, he had me depart the pattern and head east to the practice area, and climbing up to 5500 feet MSL, he had me slow down to just above stalling speed, start a left shallow turn and add right rudder. As the airplane stalled I had the strangest sensation, no roller coaster has ever come close, instead of blue sky in the windscreen I was looking at brown ground, and as far as I could tell we were upside down, through the terror of the moment Jan talked me out of the spin, controls neutral, oposite rudder, pull slowly out of the dive. As we leveled off he asked me what altitude we were at, as I remember it was around 2,800 feet MSL. Then he asked me what would happen if I experenced this on base to final in the traffic pattern. The answer was obvious, I would be a pile of wreckage off the end of the runway with a very short-lived aviation career. Needless to say this cured my cross-control tendencies.

Another training event the sticks out in my mind was the first time we did takeoffs and landings at the High School runway. The runway was 1,500 feet long, not sure of the width, but it seems like we had about 5 feet on each side of the wheels when on the center line of the runway. Landing from the south you also had to go between a cutout in the trees to be able to stop in time on the runway. After getting confortable landing here every runway since seemed huge. I remember landing at Chattanooga (KCHA) on a night cross country and commenting to Jan, that I felt like I could of landed sideways on the runway, it felt that large.

Very soon after this I started wearing old shirts to all my flight lessons, the reason for this occurred on February 8, 1978. The lesson that day was stalls, takeoffs and Landing. As we were taxing back in Jan told me it was time for my first solo. I was very excited, and after some last minute advice from Jan, including watch for floating on landing the plane will be light with him not in the right seat, complete 3 takeoffs and landings to a full stop. It was a blast, and at the end of my shirt was shorter in the back because Jan cut the tail out of it signed and dated my solo [an aviation tradition]. Total flight time accumulated on the day of my solo was 18.1 hours. I was now officially a pilot with solo priveleges.

In my next article I start cross country training, when Jan decided that it would be best accomplished this in the 172. Checking out in N5970R was like moving into a 747, this started a love affair with one of my faviriote planes to date. Since this time I have flown over 900 hours in many different models of the 172 and feel like I am stepping into an old friend every time.

More about Randy here: https://www.flyhpa.com/team/randy-delong/


Would you like more information?

Send us a message below.

14 + 9 =